

easynutrition GmbH Helenenstraße 24 89617 Meiningen

gmbh@easy-nutrition.com www.easy-nutrition.com

Phone.: 03693 - 93 69 630 Fax: 03693 - 93 69 631

> Quantum-leap in Food-processing Innovative, sustainable and ecological technology in food processing "Made in Germany" - Thuringia

IRD-TECHNOLOGY

Index

1. Quality improvement by infrared light	3
2. FoodSafe-IRD - possible applications	4
3. Machine Examples	5
4. IRD-Technology Example of use	6
5. FoodSafety-IRD - Your advantages	7
6. Radiation	8
7. Certificate-Validation procedures	9
8. Mode of action	11
9. Germ reduction	12
10. Germ reducing	15
11. Roasting	16
12. Decontamination	17
13. Disinsectisation Stock protection	18
14. Test facility Thuringia	19

Quality improvement by infrared light

Light is extremely diverse:

Sunlight drives the biosphere.

Light allows us to see objects and a great variety of colors. Light even affects our feelings.

Light reveals the distances and dimensions in the universe, shows how stars and galaxies are moving and of which elements they are consisting.

Light gave the physicists revolutionary concepts such as quantum physics or the Wave-particle duality.

Light Transmits information and processes materials.

With the help of sunlight plants transform carbon dioxide and water into carbohydrates, which serve as food for humans and animals. And light does a whole lot more!

Rolf Heilmann: Licht "Die faszinierende Geschichte eines Phänomens"

By using infrared light we have succeeded to drastically reduce microbial germs and even partially dissolve and evaporate pollutants from food bulk goods, such as tea, dried herbs and vegetables, nuts and seeds. As I was able to present you before, this is a quantum leap in terms of food safety and an absolute novelty in food technology!

FoodSafe-IRD **FS-IRD**

Germ reduction \star

- Decontaminating
- \star Drying
- \star Stock protection

Disinfest \star $\star \star$ Opening flavors Roasting \star Toasting

Machine Examples

Page 5

IRD-Technology Example of use

FoodSafety-IRD - Your advantages

Easy cleaning

★ Good access to all components allows for easy and fast cleaning.

Low maintenance costs

★ Low wear-and-tear on parts ensures low maintenance- and spare-parts costs.

Automated

- \star High level of Automation reduces personnel costs.
- ★ Easy-to-operate machine.
- ★ User-friendly control panel.

IRD-module

- ★ Our own infrared module developed specifically for dusty environments with air-shield results in long life of the infrared lamps.
- \star Built-in reflectors provide excellent energy efficiency in the infrared lamps.

No ionizing radiation

The good news:

Ionizing radiation = describes any radiation of particles or electromagnetic radiation, that is capable of removing electrons from atoms or molecules and thereby producing positively charged ions or molecules.

Certificate-Validation procedures

Germ reduction higher than the factor of 10^5

Multifunctional mode of action

Only one work step – several features :

Germ reduction – Examples

Parsley

Vanilla

Pumpkin seeds

Onion-Garlic-mixure

Rose flowers

Cornflowers

Germ reduction

Product shapes and sizes

★ For the first time, food in bulk form such as tea, leaves, herbs, dried vegetables and dried mushrooms, nuts, pits, seeds, grain, cereals, spices and cut-, chopped- and powdered food can be treated by means of infrared light in such a way that the microbiological load is drastically reduced and even contaminants are partially dissolved and evaporated.

★ Validated to reduce microbiological infestation up to > 6-log (validated). This corresponds to a millions-fold germ reduction.

Protection of sensors

 \star Maximum protection of the sensory properties of the product.

No steam

 \star No steam is required; no condensation on the product.

Mushroom

Chilli

No chemicals

Germ reduction without any addition of chemicals.

Finished mixtures

★ With salt and sugar added, finished mixtures are free-flowing and treatable.

Residual moisture setting

- \star The product can be treated by a water-spraying system.
- ★ The product can be cooled if necessary and offers maximum protection.
- ★ It allows in addition to germ reduction an accurate and optimal residual moisture setting of the end product. This is a unique advantage in the germ reduction process.

Storage protection

★ Due to the heating of the product, it is safe-storage protected at the same time.

Pepper

Fruit tea

Germreducing

			1	60 120			39 43	1	20 sek	Wasser			
			3	180	2	40	43	-	20 sek		-		
			4	240		6 31	40	Agg	lomerate bi:	s 1cm			
			5	300	2	45	41		100	- 2			
			6	360 420		3 - 1 2	43	205	H2O				
			8	480		6 3	43			13			
			9	540		0 - 27	317/0	30s H2i 30 s	ett:	2			
			10	600	2	30	41 39	24,15 fließ	tgut	88			
			11		-		40	119.0					
Melisse Blätter						Ē	42	114.0		1			
Helisse blatter						-	43 45	21,22 104.0				ļ	
						ŀ	70	99.0			1	-	~
						Ē	80	94.0			1		
Gesamtkeimzahl	8.800.000	->	390.00	D KB	E/;	g -	86 92	84.0		/			
						-	100	79.0					
E-Coli	210	->	< 10) KB	E/ 🛿	5	110	5,53 740		t			1
		7250				-	100 102	64,0	·····				
Schimmel	42.000	->	30) KB	E/ {	5	102	58.0				·····	R
		-			10.0	2.1	100	54.0					
Enteros	300.000	->	1.100) KB	E/ §	5	97 96	1,95 40	man				
	4 000	100		VD	- /		70	39,0					
Bac. cerreus	4.900	->	< 10	VR	E/ {	5	5	20					
	00			VD	- 1.	_ 6	glomer	ate 240					
Sulf.red. Clostr.	23		< 3	KB	-/5			16.0	ADMONDAUX CARDS		Service Process	and a second second	

easynutrition

Roasting

Principle

★ In contrast to conventional convective treatments, this new procedure is not controlled by means of the temperature of the heat transfer medium, but rather by very fast and precise control of product temperature. Focused infrared light penetrates below the surface of the product particles and is thereby converted into heat in the interior. In a very short time and with maximum protection of the product the desired degree of roasting is achieved.

Perfect roast

 Absolutely uniform roasting is produced through the continuous mixing of roasting material.

Gentle movement

★ The product is mixed and conveyed gently, continuously and with at low speed. Even moderately fragile products, such as cashews and peanuts, are treated without damage.

Different degrees of roasting

★ Various roasting levels, and thus taste and color variations, can be realized by simply setting the temperature and residence time.

Coffee

Nuts

easynutrition

Decontamination

Sample

IR- Trocknungstest				Nr: IRDK116			16	Datum	04.12.2013	
Vers	uchsabla	auf								
Prod	lukt			Süßho	olzwurz	el nat F	S,			
			RW Muster IRX			113				
									IRD aufheizen 120°C	
									mit Wasserkühlung dort	t i
Ziel des Versuches: Re		Reduktion OTA- Gehalt					30min halten			
Start	zeit	12.06	Uhr		Menge	Charg	3	kg	RF fast 105	
Zeit	Zeit	Tromn	St	rahler	Temp.	RF	SG	Bemerkung		
min	sek	%	Anz.	%	°C	%	g/1			
1		20	5	100	50	9,05	210			
3					100			5		
.4	15sek W	lasser			123		Trunte	runter auf 110°C		
5 60sek Wasser				125		riecht k	räftig			
7					105			Anhaftunge	n am Mantel >>Schalen s	chwarz
8	60sek V	Vasser			126		fließt gut, keine Agglomerate oder			
9					100		Anbackungen			
11	1min W	asser			130					
14	1min W	asser					-			
17	1min W	asser								
18					103	7,68	Meßwert nach einsprühen			
21	1min W	asser				4,13	vor eins	vor einsprühen		
24	1min W	asser			135		Constant Constant			
30	80sek V	Vasser	1		140	1				
31					100	9,05	nach Eir	nsprühen		
34	1min W	asser			142					
37	1min W	asser			140					
38			4	65	125		nicht ar	tistatisch!!!		
39	Strahler	raus			128	2,71	1			

Ochratoxin A reduced 40 %

Disinsectisation Stock protection

Examples Grain beetles

Grain beetles. The granary weevil attacks grains, including wheat, rye, oats, barley, maize (corn), millet, rice, pasta, buckwheat, flour, bran, grist, almonds, peanuts, peas, beans, soy.

Grinding products.

 \star It doesn't grow in ground products.

Development

★ From egg to pupa the granary weevil evolves in the cereal grain that it consumes almost completely. After about 5 weeks at 25°C, the young beetles hatch. Mating takes place within a few days. The females lay an egg per day for about 200 days. Development from egg to beetle takes 29 to 34 days at 27°C. Lifespan: 6 months at 29°C and 75% relative humidity; 2.5 years at approximately 10°C. Cold stasis occurs at 5°C, heat rigidity at 38.4°C. Death from freezing occurs below -10°C; death from excess heat occurs above 40°C.

Grain moisture

 \star The beetle does not propagate in wheat with a grain moisture less than 9%.

from: Reichmuth, Ch. (1997) Vorratsschädlinge im Getreide, Mann Verlag Reichmuth, 23th February 2011

Our test facility in Rohr in Thuringia

